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Intermittency and dynamical chaos in reversible spontaneous emission
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It is shown that a type of reversible spontaneous emission, the chaotic vacuum Rabi oscillations, may occur
in the interaction of two-level atoms strongly coupled with a single cavity mode under a modulation of the
atom-field coupling. Such a modulation arises naturally if the atoms move through a cavity in maserlike
experiments. The existence of homoclinic chaos in reversible spontaneous emission is proven analytically.
Evidence of intermittency associated with the spatial modulation of the vacuum Rabi frequency is shown
numerically for the values of parameters that are achievable in present-day experiments with Rydberg atoms
moving through a higl) microwave cavity in the strong-coupling regime.

PACS numbds): 05.45—a, 42.65.Sf, 42.50.Fx

It is known that spontaneous emission of excited atoms in 1 N 1
a cavity is qualitatively different from spontaneous emission H= —ﬁwaz ol+holatat -
in free spacgl]. In the strong-coupling and single-mode 2 =1 2
regime Qo>T. ', T, 1), it may be even reversible demon- N
strating the effect of the vacuum Rabi oscillations that has +1Q(1) D (a0, +alal), (1)
been found experimentally with Rydberg atoms flying slowly j=1

through a highQ microwave cavity{2] and with the usual
atoms on optical fransitions in a mmrocgv[t;ﬂ. The simple where the Pauli operators, . and the boson operatoes
theory neglecting the cavity and atomic damping; (T, ~t _ : )
—) and the spatial structure of the cavity mode anda’ describe the atoms and the mode, respectively. The
=const) predicts in the rotating-wave approximation a peri-Hamiltonian(1) is known to generate in the Heisenberg pic-
odic exchange of energy between the atoms and a select&éf€® semiclassical dynamical chaos in the atom-field interac-
cavity mode[4]. tion [6]. However, the semiclassical approximation neglects
Recently, it has been demonstrated numericglythat ~ all quantum correlationsand, in particular, those that are
the spatial modulation of the vacuum Rabi frequency of two-responsible for spontaneous emission. The intensity radiated
level atoms(, moving through a single-mode cavity can by theN-atom system i$7]
drastically change the character of the vacuum Rabi oscilla-

tions. In the present paper we show analytically that a type of N N N

reversible spontaneous emissidhe chaotic vacuum Rabi I(t)=|1<2 > (}L(}i_> =1, =[z(t)+1]+1,N?r (1),
oscillations may arise under realistic conditions in the inter- i=1j=1 2

action of moving excited two-level atoms with vacuum. The 2

nature of this phenomenon is elucidated with the help of the
Melnikov analysis and is proven to be homoclinic. By com-wherel, is the intensity of the spontaneous radiation of a
puting the maximal Lyapunov exponent, we find the rangesingle atom. The first term describes the ordinary reversible
of the values of the atom-cavity detuning, of the number andpontaneous emission proportional to the number of atéms
velocity of atoms for which some manifestations of quantumand to the density of the atomic population inversmiThe
homoclinic chaos in reversible spontaneous emission can te=cond term describes the cooperative spontaneous emission
found in real experiments. An intermittent route to chaos isproportional toN? [7] and to quantum correlations among
demonstrated in the vacuum Rabi oscillations of the atomithe atomsr [8].
population where the duration of the chaotic state increases In the Heisenberg picture, the main problem is to translate
with an increasing the velocity of the atoms. the respective operator equations into a tractable closed set
Consider “a monoenergetic droplet” wittN identical  of c-number equations that are able to describe adequately a
two-level atoms that moves through a single-mode Igh- physical situation considered. With the aim to describe the
cavity along the axi& and is supposed to be so confined thatreversible spontaneous emission we go beyond the simple
all the atoms “see” the same field when moving. Generallysemiclassical factorization and take into consideration the
speaking, the cavity field is inhomogeneous spatially, so thgy|iowing bilinear operatorsf:N*ZEi’Ejz};(}L (the prime
vacuum Rabi frequency of the moving atoms should be cony, , . N L
. : : - enotes summation over different atoma=N"-"a'a, u
sidered as a time-dependent functidiy(k)=Qq(v,t), BRGNP LAt Ay At N A A
wherev, is the velocity of atoms. For simplicity, we will =N ~(aZjo +a'Zjol), v=iN""Ha'2jo. —aZjo),
work in the rotating-wave and Raman-Nath approximationgand the population inversion operains N~ '=;7 . It can be
and in the strong-coupling regime neglecting cavity-modeshown thata low-dimensional closed set of equatidos the
damping and atomic relaxation. The respective Hamiltoniarquantum correlators of the second order,u, andv and for
has the form z over an initial quantum state that is supposed to be factor-
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ized into a product of the collective initial atomic state just 1 z,— 7,
before entering the cavity and vacuum field state can be dez(7)=2z,+ (z,—2;)sr? E(Zg—zl)QN(T— 70); 77|
rived s 1(5)
n=—Qn(7)v, z=2Q\(7)v, u=(w-1)v, where
)
1 7 dz
7o (6)

. . z+1 =
r=—Qn(7)2v, v=(1—w)u—QN(7)(T+2r+2nz. OW2)2 (z-2,) (2= 25) (2 25)

When deducing E¢3), we have neglected the quantum cor- andz, , ; are the roots of an algebraic cubic equation that

. ) (“|“r Ay arises when inverting the elliptic integral. The exact solu-
rel_auonfs beyondAtpTeAsecond order; for exam Hoz)is tions for the other variables arm2W-—z, 4r=4N"2R(R
written in place(aa'o,).

_ 2 _ _ =;
The derivatives in Eqs(3) are taken with respect to ;:r‘)]tioznédzt?;tusolit::)&las) folr)tzh'e fggt\(lad z.imIt Ies r;,(t)aLr{rl:ijclZsesical
=w,t. The time-dependentQy(7)=Qq(7)YN/w,, and P

. . . version(without any quantum correlations terms of Jaco-
time-independenty= w./w,, control parameters are the di- ( ya n

mensionless collective vacuum Rabi frequency and the d:EAafl]e”'pnc functions have been known for a long time

mensionless detuning, respectively. The dynamical syste

(3) possesses two integrals of motion In the resonance limit, when the frequency of the cavity

mode coincides exactly with the atomic transition frequency,
2+ 4r=4N"2R(R+1), z+2n=W, 4) i._e., w=1, the set(3) is integra_ble for any kind of modula-
tion f(7) of the vacuum Rabi frequencfy(7)=Qnf(7)
resulting from the unitarity of atomic evolution and conser-due to a reduction of the system’s dimensigne variableu
vation of the total energy of the atom-field system in a lossPecomes a constantn this integrable limit, exact solutions
less cavity, respectively. Hei@ is the cooperation number are obtained from the respective solutions of the “homoge-
which labels the atomic Dicke staté® M) [7], and M neous” limit when transforming to the new “time’r
=Nz2 is proportional to the energy stored by the atoms and~/f(7")d7’. Thus, the resonant two-level atoms when
is such tha{M|<R<N/2. moving through a lossless single-mode cavity will experi-

If there are initially no correlations among the atoms, po-ence a periodically modulated exchange of energy with the
larization, and cavity photons, we still have on the right-handcavity field regardless of the spatial structure of the cavity
side of the last equation in the s@ the termz+1 which ~ Mode along the propagation axishis analytic result will be
equals twice the density of the atoms in the excited statedsed m_checklng the results of our numerical simulations of
Namely, this term is the source of the spontaneous emissiof)€ nonintegrable systef8).

It drives v, which in turn drives the other variables in Eq. N order to show what happens when the nonresonant
(3), creating the atom-atom correlations, polarization, angWo-level atoms move through a spatially varying cavity
cavity photons. The situation differs strongly from the semi-field we will use the perturbative Melnikov meth¢ii?] that
classical mode[6,9] where the respective initial state with €nables us to detect transversal intersections between per-
zero polarization and cavity vacuum is an equilibrium statefurbed stable and unstable manifolds of a hyperbolic fixed
Our model accounts for small quantum correcticag/N pomt. Suppos_e the atoms move through a cavity ina direc-
that are responsible for spontaneous emission. During théon @long which the depth of the spatial modulation of the
evolution, quantum corrections grow. Let us estimate the/acuum Rabi frequency may be considered as small as com-
time scale of validity of the factorization of the third-order Pared with its amplitude valu€ly(7)=Qy+ esinbwr),e
correlators involved. As is knowi0], the scale of quantum- <, wWhereb=v,/c is the dimensionless velocity of the
classical correspondence depends strongly on the type &f0ms and is the velocity of light in vacuum. The signed
motion. For regular motion, the time scale has a power dedistance betwe_en Fhe pert_urbed stgble and unstable manifolds
pendence om. For chaotic motion, a “distance” between ©f the hyperbolic fixed point at a time momery along the
initially adjacent trajectories can grow exponentialty,r) ~ normaln to an unperturbed homoclinic surface is propor-
~d, exp(\7), where\ is the maximal Lyapunov exponent. tional to eM(7o) +O(€?). Here

Initially we havedy=1/N<1, and from the conditioml(7)
<1 one can e_stimate .the time scal_e of vglidity of our dy- M (7o) = jw n(s)-G(s)dr )
namical equations(3) in the chaotic regime to ber, o

<\ tInN.

There exist, at least, two integrable versions of the fiveis the Melnikov function. The integral should be evaluated
dimensional set of the nonlinear equatid3s. In the “ho-  along the separatrig that can be easily found in an explicit
mogeneous” limit, a spatial inhomogeneity of the cavity form s:(ng,zs,Us,rs,vs) from the integrable “homoge-
mode is neglected, and the vacuum Rabi frequeflgyis  neous” version of Eqs(3). After calculating the scalar prod-
supposed to be a constant. This is the case, for example, witkct with the normal vecton(s)=[0,1— »,2Q,,0,0]" and
motionless atoms in the pointlike approximation. The extrathe O(e) perturbation part of the vector field on the separa-
integral C=2Q\u—(w—1)z helps to integrate Eqg3) in  trix  G(s)=[—vgSin(wr),2vsSin(bwr),0,— z5v Sin(bwr),
terms of Jacobian elliptic functions. The exact solution for—(z./N+1/N+ 2r +2nzy)sinpw7)]" and carrying out the
the density of the atomic inversion looks as integration we find
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27(1— w)(bw)? 1__;‘ v
cogbwry). 8 | .
Q3shbwm/\za—2,Qy) sbor). @ 2 |

W;{“

!" ﬁ{ 1

M(7o)=

It is clear from Eq.(8) that out of resonancey+# 1, the

Melnikov integral has simple zeroes as a function mgf 1 : : :
implying transversal intersections of the stable and unstable © 2000 4000 €000 T
manifolds in an infinite variety of homoclinic pointfor a 1

review of homoclinic chaos in Hamiltonian systems see, e.g.,,
[13]). Therefore, we may conclude from the above analysis
that horseshoe chaos becomes possible in the interaction ¢ ] i A
moving two-level atoms with a cavity vacuum field even in " I

the rotating-wave approximation and under a small modula- ‘
tion.

In order to confirm numerically the onset of chaos inre- o 20 0 &0 -
versible spontaneous emission we have calculated the max ,_
mal Lyapunov exponerX in the Egs.(3) assuming modula-
tion of the vacuum Rabi frequency in the forfy(7)
=y Sin(wb7). The results depend strongly on the initial |
atomic state. With initially fully inverted atomgthe so- \ ; e
called superfluorescent staftd/2,N/2) [14]), A may reach ] 1A I
the values of the order of 0.5 &\=8.5 andw=0.9 even if |

-1

the atoms move comparatively slowlyb£5x10" %), 0 a0 20 @
whereas\ is negligibly small at the same values of the con-
trol parameters but with the atoms prepared initially in the [ [

superradiant statN/2,0). We have observed windows, i.e., % |

parameter intervals in which the Rabi oscillations are peri-
odic (\~0), that are punctuated by intervals in which the
oscillations are chaotic with positive values)af This effect
of intermittency is especially prominent with initially fully
inverted atoms|N/2N/2), when the windows have been
found very close to almost every parameter value that leads
to chaos. FIG. 1. Dependence(r) with N=10° initially fully inverted

The maximal Lyapunov exponent cannot, of course, beitoms atQQy=1: (@ b=0.001, o=1.5, (b) b=0.01, ©=1.5, (¢
measured directly in a real experiment. What is measured i8=0.1, »=1.5, and(d) b=0.1, =1, exact resonance.
the radiated intensity that can be written in terms of the
atomic variables as Eq2). Both the atomic population in- IS equal tom/bw and may be estimated to 2000 with
versionz and the quantum correlation among the atams b=0.001 and=200 withb=0.01.
should display chaotic behavior in a range of the values of Rydberg atoms in a higly microwave cavity 2] seem to
the system’s control parametess,, », and{y, for which be a physical system that is well suited to observe the para-
the respective maximal Lyapunov exponent is positive. Tgnetric chaotic vacuum Rabi oscillations and is adequate to
illustrate the structural chaos and intermittency in the reversthe theory presented. This device can be really operated in
ible spontaneous emission that could be found in a real exhe regime when all the assumptions adopted in our model
periment, we show in Fig. 1 the oscillations pfwith N may be considered as valid. In a high-superconducting
=10 initially fully inverted atoms at the fixed values of the Mmicrocavity, the single-atom vacuum Rabi frequen@y
control parameter®y=1 andw=1.5 but with different val- may reach 18-10° rad/s. Therefore, the period of the col-
ues of the atomic velocity@ b=0.001,(b) b=0.01, andc) lective vacuum Rabi oscillation g=27/QyN is much
b=0.1. As is seen from the figure, the duration of the chaotiémaller than the lifetimes of the circular Rydberg states
phase of the oscillations increases with an increasing the ve=10"2 s and of the microwave photors10™*—10"2 sin
locity of the atoms. Partl of this figure shows for a com- a superconducting microwave cavity wi=10° [2], im-
parison the evolution of the density of the atomic populationplying the Hamiltonian approach adopted and the strong-
at exact resonances(= 1) when the atom-cavity system was coupling limit to be valid. A comparatively long wavelength
shown to be integrable. As expected, the oscillations are=1 cm implies the pointlike approximation to be valid. The
regular at exact resonance. recoil energy of atoms accompanying the emission of micro-

Two peculiarities of the parametric vacuum Rabi oscilla-wave photons can be estimated to be very sif@jl(the
tions are seen distinctly in the figuré) the delay time dur- Raman-Nath approximation The time-scale of quantum-
ing which quantum correlations among the atoms build uprlassical correspondentg= w; 7, in the chaotic regime of
and(ii) a characteristic periodic structure of the dependenceeversible spontaneous emission from Rydberg atoms mov-
z(7) that is due to a spatial modulation of the vacuum Rabing through a highQ microwave cavity may reach
frequency. The dimensionless half-period of the modulatiorl00—1000 g with N=10'° atoms.

-1 T T y T T T 1
20 400 600 T
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In conclusion, we showed analytically and numerically sion in experiments with Rydberg atoms moving through a
that the intermittency and dynamical chaos of a homoclinichigh-Q microwave cavity.
nature may occur in the interaction of a very simple quantum
system with vacuum. It should be possible to observe some This work was supported by Grant No. 99-02-17269 from
manifestations of this kind of reversible spontaneous emisthe Russian Foundation for Basic Research.
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