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Intermittency and dynamical chaos in reversible spontaneous emission

S. V. Prants
Laboratory of Nonlinear Dynamical Systems, Pacific Oceanological Institute of the Russian Academy of Sciences,

690041 Vladivostok, Russia
~Received 22 June 1999!

It is shown that a type of reversible spontaneous emission, the chaotic vacuum Rabi oscillations, may occur
in the interaction of two-level atoms strongly coupled with a single cavity mode under a modulation of the
atom-field coupling. Such a modulation arises naturally if the atoms move through a cavity in maserlike
experiments. The existence of homoclinic chaos in reversible spontaneous emission is proven analytically.
Evidence of intermittency associated with the spatial modulation of the vacuum Rabi frequency is shown
numerically for the values of parameters that are achievable in present-day experiments with Rydberg atoms
moving through a high-Q microwave cavity in the strong-coupling regime.

PACS number~s!: 05.45.2a, 42.65.Sf, 42.50.Fx
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It is known that spontaneous emission of excited atom
a cavity is qualitatively different from spontaneous emiss
in free space@1#. In the strong-coupling and single-mod
regime (V0@Tc

21 ,Ta
21), it may be even reversible demon

strating the effect of the vacuum Rabi oscillations that h
been found experimentally with Rydberg atoms flying slow
through a high-Q microwave cavity@2# and with the usual
atoms on optical transitions in a microcavity@3#. The simple
theory neglecting the cavity and atomic damping (Tc ,Ta
→`) and the spatial structure of the cavity mode (V0
5const) predicts in the rotating-wave approximation a pe
odic exchange of energy between the atoms and a sele
cavity mode@4#.

Recently, it has been demonstrated numerically@5# that
the spatial modulation of the vacuum Rabi frequency of tw
level atomsV0 moving through a single-mode cavity ca
drastically change the character of the vacuum Rabi osc
tions. In the present paper we show analytically that a typ
reversible spontaneous emission,the chaotic vacuum Rab
oscillations, may arise under realistic conditions in the inte
action of moving excited two-level atoms with vacuum. T
nature of this phenomenon is elucidated with the help of
Melnikov analysis and is proven to be homoclinic. By com
puting the maximal Lyapunov exponent, we find the rang
of the values of the atom-cavity detuning, of the number a
velocity of atoms for which some manifestations of quant
homoclinic chaos in reversible spontaneous emission ca
found in real experiments. An intermittent route to chaos
demonstrated in the vacuum Rabi oscillations of the ato
population where the duration of the chaotic state increa
with an increasing the velocity of the atoms.

Consider ‘‘a monoenergetic droplet’’ withN identical
two-level atoms that moves through a single-mode highQ
cavity along the axisk and is supposed to be so confined th
all the atoms ‘‘see’’ the same field when moving. Genera
speaking, the cavity field is inhomogeneous spatially, so
vacuum Rabi frequency of the moving atoms should be c
sidered as a time-dependent functionV0(k)5V0(vat),
where va is the velocity of atoms. For simplicity, we wil
work in the rotating-wave and Raman-Nath approximatio
and in the strong-coupling regime neglecting cavity-mo
damping and atomic relaxation. The respective Hamilton
has the form
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N

~ âŝ1
j 1â†ŝ2

j !, ~1!

where the Pauli operatorsŝz,6 and the boson operatorsâ
and â† describe the atoms and the mode, respectively.
Hamiltonian~1! is known to generate in the Heisenberg p
ture semiclassical dynamical chaos in the atom-field inter
tion @6#. However, the semiclassical approximation negle
all quantum correlationsand, in particular, those that ar
responsible for spontaneous emission. The intensity radi
by theN-atom system is@7#

I ~ t !5I 1K (
i 51

N

(
j 51

N

ŝ1
i ŝ2

j L 5I 1

N

2
@z~ t !11#1I 1N2r ~ t !,

~2!

where I 1 is the intensity of the spontaneous radiation of
single atom. The first term describes the ordinary revers
spontaneous emission proportional to the number of atomN
and to the density of the atomic population inversionz. The
second term describes the cooperative spontaneous emi
proportional toN2 @7# and to quantum correlations amon
the atomsr @8#.

In the Heisenberg picture, the main problem is to transl
the respective operator equations into a tractable closed
of c-number equations that are able to describe adequate
physical situation considered. With the aim to describe
reversible spontaneous emission we go beyond the sim
semiclassical factorization and take into consideration
following bilinear operators:r̂ 5N22( i8( j ŝ1

i ŝ2
j ~the prime

denotes summation over different atoms!, n̂5N21â†â, û

5N23/2(â( j ŝ1
j 1â†( j ŝ2

j ), v̂5 iN23/2(â†( j ŝ2
j 2â( j ŝ1

j ),

and the population inversion operatorẑ5N21( j ŝz
j . It can be

shown thata low-dimensional closed set of equationsfor the
quantum correlators of the second ordern,r ,u, andv and for
z over an initial quantum state that is supposed to be fac
1386 ©2000 The American Physical Society
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ized into a product of the collective initial atomic state ju
before entering the cavity and vacuum field state can be
rived

ṅ52VN~t!v, ż52VN~t!v, u̇5~v21!v,
~3!

ṙ 52VN~t!zv, v̇5~12v!u2VN~t!S z11

N
12r 12nzD .

When deducing Eq.~3!, we have neglected the quantum co
relations beyond the second order; for example,^ââ†&^ŝz& is
written in place^ââ†ŝz&.

The derivatives in Eqs.~3! are taken with respect tot
5vat. The time-dependent,VN(t)5V0(t)AN/va , and
time-independent,v5vc /va , control parameters are the d
mensionless collective vacuum Rabi frequency and the
mensionless detuning, respectively. The dynamical sys
~3! possesses two integrals of motion

z214r 54N22R~R11!, z12n5W, ~4!

resulting from the unitarity of atomic evolution and conse
vation of the total energy of the atom-field system in a lo
less cavity, respectively. HereR is the cooperation numbe
which labels the atomic Dicke statesuR,M & @7#, and M
5Nz/2 is proportional to the energy stored by the atoms a
is such thatuM u<R<N/2.

If there are initially no correlations among the atoms, p
larization, and cavity photons, we still have on the right-ha
side of the last equation in the set~3! the termz11 which
equals twice the density of the atoms in the excited st
Namely, this term is the source of the spontaneous emiss
It drives v, which in turn drives the other variables in E
~3!, creating the atom-atom correlations, polarization, a
cavity photons. The situation differs strongly from the sem
classical model@6,9# where the respective initial state wit
zero polarization and cavity vacuum is an equilibrium sta
Our model accounts for small quantum corrections.1/N
that are responsible for spontaneous emission. During
evolution, quantum corrections grow. Let us estimate
time scale of validity of the factorization of the third-ord
correlators involved. As is known@10#, the scale of quantum
classical correspondence depends strongly on the typ
motion. For regular motion, the time scale has a power
pendence onN. For chaotic motion, a ‘‘distance’’ betwee
initially adjacent trajectories can grow exponentially,d(t)
.d0 exp(lt), wherel is the maximal Lyapunov exponen
Initially we haved0.1/N!1, and from the conditiond(t)
!1 one can estimate the time scale of validity of our d
namical equations~3! in the chaotic regime to betq
!l21 ln N.

There exist, at least, two integrable versions of the fi
dimensional set of the nonlinear equations~3!. In the ‘‘ho-
mogeneous’’ limit, a spatial inhomogeneity of the cav
mode is neglected, and the vacuum Rabi frequencyV0 is
supposed to be a constant. This is the case, for example,
motionless atoms in the pointlike approximation. The ex
integral C52VNu2(v21)z helps to integrate Eqs.~3! in
terms of Jacobian elliptic functions. The exact solution
the density of the atomic inversion looks as
t
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z~t!5z11~z22z1!sn2FA1

2
~z32z1!VN~t2t0!;

z22z1

z32z1
G ,
~5!

where

t05
1

VNA2
E

z0

z1 dz

A~z2z1!~z2z2!~z2z3!
, ~6!

and z1,2,3 are the roots of an algebraic cubic equation th
arises when inverting the elliptic integral. The exact so
tions for the other variables are 2n5W2z, 4r 54N22R(R
11)2z2, 2VNu5C1(v21)z, 2VNv5 ż. It should be
mentioned that solutions for the related simple semiclass
version~without any quantum correlations! in terms of Jaco-
bian elliptic functions have been known for a long tim
@4,11#.

In the resonance limit, when the frequency of the cav
mode coincides exactly with the atomic transition frequen
i.e., v51, the set~3! is integrable for any kind of modula
tion f (t) of the vacuum Rabi frequencyVN(t)[VNf (t)
due to a reduction of the system’s dimension~the variableu
becomes a constant!. In this integrable limit, exact solution
are obtained from the respective solutions of the ‘‘homo
neous’’ limit when transforming to the new ‘‘time’’t
→* f (t8)dt8. Thus, the resonant two-level atoms wh
moving through a lossless single-mode cavity will expe
ence a periodically modulated exchange of energy with
cavity field regardless of the spatial structure of the cavi
mode along the propagation axis. This analytic result will be
used in checking the results of our numerical simulations
the nonintegrable system~3!.

In order to show what happens when the nonreson
two-level atoms move through a spatially varying cav
field we will use the perturbative Melnikov method@12# that
enables us to detect transversal intersections between
turbed stable and unstable manifolds of a hyperbolic fix
point. Suppose the atoms move through a cavity in a dir
tion along which the depth of the spatial modulation of t
vacuum Rabi frequency may be considered as small as c
pared with its amplitude valueVN(t)5VN1e sin(bvt),e
!VN , whereb5va /c is the dimensionless velocity of th
atoms andc is the velocity of light in vacuum. The signe
distance between the perturbed stable and unstable mani
of the hyperbolic fixed point at a time momentt0 along the
normal n to an unperturbed homoclinic surface is propo
tional to eM (t0)1O(e2). Here

M ~t0!5E
2`

`

n~s!•G~s!dt ~7!

is the Melnikov function. The integral should be evaluat
along the separatrixs that can be easily found in an explic
form s:(ns ,zs ,us ,r s ,vs) from the integrable ‘‘homoge-
neous’’ version of Eqs.~3!. After calculating the scalar prod
uct with the normal vectorn(s)5@0,12v,2VN ,0,0#T and
the O(e) perturbation part of the vector field on the sepa
trix G(s)5@2vs sin(bvt),2vssin(bvt),0,2zsvs sin(bvt),
2(zs/N11/N12r s12nszs)sin(bvt)#T and carrying out the
integration we find
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M ~t0!5
2p~12v!~bv!2

VN
3 sh~bvp/Az32z1VN!

cos~bvt0!. ~8!

It is clear from Eq.~8! that out of resonance,vÞ1, the
Melnikov integral has simple zeroes as a function oft0,
implying transversal intersections of the stable and unsta
manifolds in an infinite variety of homoclinic points~for a
review of homoclinic chaos in Hamiltonian systems see, e
@13#!. Therefore, we may conclude from the above analy
that horseshoe chaos becomes possible in the interactio
moving two-level atoms with a cavity vacuum field even
the rotating-wave approximation and under a small modu
tion.

In order to confirm numerically the onset of chaos in
versible spontaneous emission we have calculated the m
mal Lyapunov exponentl in the Eqs.~3! assuming modula-
tion of the vacuum Rabi frequency in the formVN(t)
5VN sin(vbt). The results depend strongly on the initi
atomic state. With initially fully inverted atoms~the so-
called superfluorescent stateuN/2,N/2& @14#!, l may reach
the values of the order of 0.5 atVN.8.5 andv.0.9 even if
the atoms move comparatively slowly (b.531024),
whereasl is negligibly small at the same values of the co
trol parameters but with the atoms prepared initially in t
superradiant stateuN/2,0&. We have observed windows, i.e
parameter intervals in which the Rabi oscillations are p
odic (l'0), that are punctuated by intervals in which t
oscillations are chaotic with positive values ofl. This effect
of intermittency is especially prominent with initially fully
inverted atoms,uN/2,N/2&, when the windows have bee
found very close to almost every parameter value that le
to chaos.

The maximal Lyapunov exponent cannot, of course,
measured directly in a real experiment. What is measure
the radiated intensity that can be written in terms of
atomic variables as Eq.~2!. Both the atomic population in
version z and the quantum correlation among the atomr
should display chaotic behavior in a range of the values
the system’s control parameters,va , v, andVN , for which
the respective maximal Lyapunov exponent is positive.
illustrate the structural chaos and intermittency in the reve
ible spontaneous emission that could be found in a real
periment, we show in Fig. 1 the oscillations ofz with N
5106 initially fully inverted atoms at the fixed values of th
control parametersVN51 andv51.5 but with different val-
ues of the atomic velocity:~a! b50.001,~b! b50.01, and~c!
b50.1. As is seen from the figure, the duration of the chao
phase of the oscillations increases with an increasing the
locity of the atoms. Partd of this figure shows for a com
parison the evolution of the density of the atomic populat
at exact resonance (v51) when the atom-cavity system wa
shown to be integrable. As expected, the oscillations
regular at exact resonance.

Two peculiarities of the parametric vacuum Rabi oscil
tions are seen distinctly in the figure:~i! the delay time dur-
ing which quantum correlations among the atoms build
and ~ii ! a characteristic periodic structure of the depende
z(t) that is due to a spatial modulation of the vacuum R
frequency. The dimensionless half-period of the modulat
le
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is equal top/bv and may be estimated to be.2000 with
b50.001 and.200 with b50.01.

Rydberg atoms in a high-Q microwave cavity@2# seem to
be a physical system that is well suited to observe the p
metric chaotic vacuum Rabi oscillations and is adequate
the theory presented. This device can be really operate
the regime when all the assumptions adopted in our mo
may be considered as valid. In a high-Q superconducting
microcavity, the single-atom vacuum Rabi frequencyV0
may reach 1052106 rad/s. Therefore, the period of the co
lective vacuum Rabi oscillationsTR52p/V0AN is much
smaller than the lifetimes of the circular Rydberg sta
.1022 s and of the microwave photons.102121022 s in
a superconducting microwave cavity withQ.109 @2#, im-
plying the Hamiltonian approach adopted and the stro
coupling limit to be valid. A comparatively long wavelengt
.1 cm implies the pointlike approximation to be valid. Th
recoil energy of atoms accompanying the emission of mic
wave photons can be estimated to be very small@6# ~the
Raman-Nath approximation!. The time-scale of quantum
classical correspondencetq5va

21tq in the chaotic regime of
reversible spontaneous emission from Rydberg atoms m
ing through a high-Q microwave cavity may reach
100–1000TR with N51010 atoms.

FIG. 1. Dependencez(t) with N5106 initially fully inverted
atoms atVN51: ~a! b50.001, v51.5, ~b! b50.01, v51.5, ~c!
b50.1, v51.5, and~d! b50.1, v51, exact resonance.



lly
ni
um
m
i

a

m

PRE 61 1389INTERMITTENCY AND DYNAMICAL CHAOS IN . . .
In conclusion, we showed analytically and numerica
that the intermittency and dynamical chaos of a homocli
nature may occur in the interaction of a very simple quant
system with vacuum. It should be possible to observe so
manifestations of this kind of reversible spontaneous em
he

et

A

c

e
s-

sion in experiments with Rydberg atoms moving through
high-Q microwave cavity.
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